Blick Oil Colors - Rose Madder, 40 ml tube

4.7 out of 5 stars
4.7
Item #:01557-3500
View Product Details
Blick Studio Oil Paint - Rose Madder, 40 ml tube and swatch

Save For Later

  • My Wish Lists

AP Non-Toxic

Products bearing the AP seal of the Art & Creative Materials Institute, Inc. (ACMI) are certified non-toxic. A product can be certified non-toxic only if it contains no materials in sufficient quantities to be toxic or injurious to humans, or to cause acute or chronic health problems.

Product Details

Description:
Blick Studio Oil Color
Color:
Rose Madder
Size:
40 ml (1.35 oz)
Format:
Tube
No.
561

Colors on Monitors - Due to differences in users’ monitors, the colors presented are an approximation of the true color.

Reviews

Pigment Information

This color contains the following pigments:

PR5-Naphthol Red

PW6-Titanium White

PV19-Quinacridone Violet

PR122-Quinacridone Magenta


Pigment Name

PR5-Naphthol Red

Pigment Type

monoazo

Chemical Formula

C30H31ClN4O7S

Properties

This Naphthol Red is a bright deep red with bluish undertones. It has an average drying time.

Permanence

This Naphthol Red has fair to good lightfastness, not because of its masstone, but because it fades in tints. Not suitable for exterior use.

Toxicity

Naphthol Reds are not considered toxic. They may cause eye, skin, or respiratory irritation. Contact with dry pigment should be avoided.

History

Unknown.


Pigment Name

PW6-Titanium White

Pigment Type

inorganic

Chemical Name

titanium dioxide

Chemical Formula

TiO2

Properties

Titanium White is the most brilliant of the white pigments. It is considered an all purpose oil color useful in all techniques and the best all around white. Its masstone is neither warm nor cool, placing it somewhere between Lead White and Zinc White. It is less prone to cracking and yellowing than Lead White, but it still yellows easily. Titanium White dries slowly in oil form, more slowly than Lead White but more quickly than Zinc White. It is opaque in oil and acrylic forms and semi-opaque in watercolor form. This pigment has good chemical stability, and its tinting strength is superior to both Lead White and Zinc White.

Permanence

Titanium White has excellent permanence and lightfastness.

Toxicity

Titanium dioxide is highly stable and is regarded as non-toxic.

History

Titanium is the ninth most abundant element in the Earth's crust, however mineral deposits that are economical to mine are less common. Titanium dioxide was first discovered in 1821, although it could not be mass produced until 1919. Widespread use of the pigment began in the 1940s. Since that time, it has become the most commonly used white pigment. The name comes from the Latin word Titan, the name for the elder brother of Kronos and ancestor of the Titans, and from the Greek word tito, meaning day or sun.


Pigment Name

PV19-Quinacridone Violet

Pigment Type

organic synthetic, quinacridone

Chemical Formula

C20H12N2O2

Properties

Quinacridone Red is a high performance, transparent pigment with an average drying time and uneven dispersal. It is another name for Quinacridone Violet (PV19) and Quinacridone Red (PR192). Quinacridone pigments have relatively low tinting strength in general. For this reason, quinacridone colors are often expensive, because more pigment is required in the formulation.

Permanence

Quinacridone Violet has excellent lightfastness and is considered the most lightfast organic pigment in this shade range.

Toxicity

Quinacridone Violet has no known acute hazards. Overexposure to quinacridone pigments may cause skin irritation. Quinicridone pigments contain a compound found to be a skin, eye, and respiratory irritant.

History

Although quinacridone compounds became known in the late 19th century, methods of manufacturing so as to make them practical for use as commercial pigments did not begin until the 1950s. Quinacridone pigments were first developed as coatings for the automotive industry, but were quickly adopted by artists.


Pigment Name

PR122-Quinacridone Magenta

Pigment Type

organic, quinacridone

Chemical Formula

C22H16N2O2

Properties

Quinacridone Magenta is a semi-transparent and powerful bluish red with an impressive mixing range. It makes an excellent glazing color and is one of the bluest of the Quinacridone colors. The pigment's properties vary considerably, depending on how it is ground. Quinacridone pigments have relatively low tinting strength in general. For this reason, quinacridone colors are often expensive, because more pigment is required in the formulation.

Permanence

Quinacridone Magenta offers very good lightfastness in most media, but some have argued that it is less lightfast in watercolor form. Although Quinacridone Magenta received only a passing grade of "fair" under ASTM test protocols, other test results have rated the pigment very good to excellent. Transparent reddish violet pigments in general have more problems with lightfastness than any other range of colors. PR122 is often used as the Magenta of CMYK (four color) process printing because it offers a better tradeoff between tinting strength and lightfastness than other pigments in its class.

Toxicity

Quinacridone Magenta has no acute hazards. Overexposure to quinacridone pigments may cause skin irritation. Quinicridone pigments contain a compound found to be a skin, eye, and respiratory irritant.

History

Quinacridone Magenta came from a red violet aniline dye that was first produced in 1858 by Natanson. It was called Magenta to commemorate a battle in Magenta, Italy. Over time, Magenta became the standard color name for a deep, violet red. Although quinacridone compounds became known in the late 19th century, methods of manufacturing so as to make them practical for use as commercial pigments did not begin until the 1950s. PR122 has become particularly popular in the formulation of Magenta for CMYK process printing.


Safety Data Sheet

UPC Code: 741389116660